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Abstract—We study a sensor-weapon-target assignment (S-
WTA) problem that considers the desired probability of target
destruction and aims to minimize the total cost of combat
resources. Lower and upper bounds for the S-WTA problem
are obtained by constructing linear approximation models. We
also propose an adaptive large neighborhood search (ALNS)
algorithm characterized by a model-driven repair phase to
solve this problem. The destruction phase adaptively selects a
destruction operator to remove partial resource assignments and
produces an incomplete reference solution. For the destroyed
solution, the repair phase generates a reduced subproblem that
optimizes only the destroyed parts while keeping the other
parts fixed. Each subproblem is formulated as a mixed integer
programming model and solved by a general-purpose solver
to repair the destroyed solution. Computational experiments
show that the approximation formulations can obtain tight lower
and upper bounds for most problem instances. Moreover, our
proposed ALNS algorithm is competitive with the solver for small
instances and effectively solves large instances. In addition, we
experimentally demonstrate that our ALNS outperforms state-
of-the-art algorithms in the literature, and the proposed model-
driven solution repair phase outperforms the traditional heuristic
repair operators.

Index Terms—combinatorial optimization, sensor-weapon-
target assignment, nonlinear constraint, adaptive large neigh-
borhood search.

I. INTRODUCTION

IN the modern battlefield, both attackers and defenders use
various offensive and defensive military equipment. The

defender is supposed to have a group of weapons to intercept a
series of targets from the attacker. Due to the various attributes
of weapons and targets, allocating different weapons to a
particular target could lead to differing probabilities of destruc-
tion and/or varying assignment costs. Over the past decades,
constructing an optimal assignment scheme to achieve spe-
cific military goals has received considerable attention. This
problem is known as the Weapon Target Assignment (WTA)
problem [1]. The WTA problem has been proved to be NP-
complete [2]. To simplify the problem, denBroeder et al. [3]
studied a special case where all weapons are assumed to have
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the same killing probability for the targets. Kwon et al. [4]
constructed a WTA problem with a nonlinear constraint and
employed the logarithmic transformation for linearization.

Network-centric warfare has become an emerging ideology
for military construction. To rapidly guide weapons toward
threatening targets, commanders need to collect battle infor-
mation efficiently. As a result, various sensors play a pivotal
role through their detection capabilities. Bogdanowicz et al.
[5] introduced the first Sensor Weapon Target Assignment (S-
WTA) problem, which considered the assignment of sensors
in addition to the weapons. Due to the high complexity,
heuristic algorithms have been applied for solving various S-
WTA problems [6], [7].

Most of the literature on the WTA and S-WTA is concerned
with minimizing the expected threat value of destroying tar-
gets. In general, the threat of a specific target stems from
the damage it can inflict on the objects protected by the
defender. Although the minimization of the total expected
threat value is a key objective for measuring the quality of
operational engagement, evaluating the threat value of all
targets proves challenging in numerous defense scenarios.
Specifically, comparing the value of diverse objects under
defender protection, such as populations, facilities, or assets,
can be complicated. Hence, it’s more practical for commanders
to use a minimum desired destruction probability for each
target as an additional guideline. Meanwhile, as combat re-
sources become more expensive, good command controlling
the operational cost plays a key role in weaponry. In addition,
the truly complex battlefield environments require high time
response and numerous combat resources and threatening
targets significantly expand the decision-making framework.
Hence, we investigate a novel S-WTA problem that accom-
modates these conditions and develop efficient algorithms to
obtain high-quality solutions.

The S-WTA problem studied in this paper aims to minimize
the total cost of assigned combat resources so that each
target’s minimum desired destruction probability is respected.
Specifically, the proposed S-WTA model has a linear objective
that minimizes the sum of the assignment cost of both sensors
and weapons. The requirement to achieve a specific level of
destruction for all targets imposes nonlinear constraints, signif-
icantly improving the complexity of solving this problem. We
note that some studies [4], [8] also considered these features in
their work; however, they did not consider the joint allocation
of weapons and sensors. In addition to the introduced S-WTA
problem, this work has the following main contributions.
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• We present an integer nonlinear formulation of the S-
WTA. Given its nonlinear nature, we provide a compre-
hensive analysis of the problem and derive its lower and
upper bounds by exploring the linear approximations of
the nonlinear formulation. Experimental results showed
that the approximation formulations could obtain rela-
tively tight bounds for most of the instances.

• To handle large and challenging instances, we propose
an adaptive large neighborhood search (ALNS) algorithm
that alternatively executes an adaptive destruction phase
and a model-driven repair phase. The destruction phase
employs six destruction operators specifically designed
for handling the assignment of weapons, sensors, or both.
For the destroyed solution, the repair phase constructs
a reduced subproblem that only optimizes the destroyed
assignments while keeping the others fixed.

• We conduct comprehensive numerical experiments to
evaluate the performance of the proposed ALNS algo-
rithm. This is achieved by comparing it with four refer-
ence methods, including the (UB) model, a variant of the
ALNS algorithm that employs traditional heuristic repair
operators, the MRBCH algorithm [6], and the VLSN
algorithm [9]. Computational results indicate that ALNS
is competitive with the (UB) model for small instances
and outperforms it for large instances. Meanwhile, ALNS
is able to obtain much better objective values than the
other reference algorithms.

The remainder of this paper is organized as follows. Section
II presents a literature review of WTA and S-WTA problems.
Section III formally describes the studied S-WTA problem
and formulates it as an integer nonlinear model. In Section
IV, we derive the lower and upper bounds of the S-WTA
problem by exploring linear approximations of the nonlin-
ear model. Section V presents an effective adaptive large
neighborhood search algorithm specifically developed for the
S-WTA problem. In Section VI, computational experiments
are conducted to evaluate the performance of the proposed
linear approximations and ALNS algorithm. Finally, Section
VII concludes the work.

II. RELATED WORKS

This section constructs a brief literature review of WTA
and S-WTA problems. Most studies classify the problems
into static and dynamic problems, where the dynamic version
considers uncertain information that emerges over time, i.e.,
new targets or available resources. In this paper, we mainly
focus on static problems.

Since the first WTA problem was introduced [1], many
WTA variants have been studied. Several exact algorithms are
explored to obtain the optimal problem solution efficiently.
Kwon et al. [4], [8] studied the WTA problem with a linear ob-
jective function to minimize the total firing cost, provided that
each target’s minimum desired probability level is respected.
The authors developed a lagrangian relaxation approach and a
follow-up branch-and-price approach to obtain exact solutions
to this problem. Ahuja et al. [9] adopted a piecewise linear
approximation of the nonlinear objective function, i.e., the

minimization of the total expected threat value of all targets,
to determine the lower bounds of the problem. They also
developed a branch-and-bound algorithm that utilizes three
lower-bounding schemes to tackle this problem. In recent
years, Kline et al. [10] proposed a nonlinear branch-and-bound
algorithm for solving the WTA problem to minimize the same
objective as in [9]. An NLP solver is used to solve a variant
of the integer-relaxed formulation to obtain bounds. Lu et al.
[11] constructed a linear formulation of the WTA problem
to minimize the threat value of targets. They innovatively
represent each integer variable by a sequence of binary bits,
where each bit determines whether the weapon is assigned to a
target or not. They proposed a column enumeration algorithm,
which significantly reduces the number of columns by limiting
the number of weapons assigned to the targets and exploring
the dominant relationships between them. Andersen et al.
[12] studied a traditional WTA problem to minimize the total
threat value. Based on several existing linear approximation
approaches, they used convex piecewise linear functions to
linearize the objective function and proposed a branch-and-
adjust algorithm for solving the WTA problem.

To solve large scale WTA problems within a short time,
most studies resort to high-performance heuristics. Shang et
al. [13] investigated a WTA problem that minimizes the total
loss of protected assets. They proposed an immune genetic
algorithm where local information is utilized in the crossover
and mutation operations. Ahuja et al. [9] proposed a very
large-scale neighborhood search algorithm to obtain near-
optimal solutions. The search initiates with a feasible solution
to the WTA problem and proceeds through a series of “cyclic
and path exchanges” to improve the solution. Sonuc et al.
[14] explored the same WTA problem as in [9] except that
an equal number of weapons and targets are required. They
proposed a parallel version of the simulated algorithm in
which a multi-start technique is employed to restart a heuristic
algorithm with different configurations to improve the solution
quality. Kline et al. [10] developed a modified quiz problem
search algorithm to tackle large instances of the WTA prob-
lem. Subsequently, the authors devised an Eminent Domain
metaheuristic based on the quiz problem heuristic to solve the
same problem [15]. This method begins with a given initial
feasible solution and iteratively denies assignment pairings
within a subset of weapon-target pairs, maximizing the overall
benefit by reallocating these assignments to other potential
pairings. Some other methods include learning algorithms
[16], [17], swarm intelligence algorithms [18]–[21], quantum
algorithms [22], game theory [23], and hybrid heuristics [24],
[25]. For a comprehensive review of various WTA problems,
the interested reader is referred to Kline et al. [26].

In the network-centric warfare context, substantial studies
have also considered allocating sensors in the WTA problem.
Some representative exact algorithms for solving S-WTA prob-
lems are presented as follows. Bogdanowicz and Coleman [5]
studied a simplified S-WTA problem, whose linear objective
is to maximize the total benefit of assigning each sensor
to each target and each weapon to each target. They pro-
posed a forward auction with the benefit scaling algorithm to
solve this S-WTA problem. Bogdanowicz [27] further studied
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a symmetric assignment problem and considered the same
numbers of sensors, weapons, and targets. Based on above
auction algorithm, the proposed Swt-opt algorithm converges
to an optimal solution in a finite number of steps. Given the
significant reliance of Swt-opt on network topologies, Li et al.
[28] improved the Swt-opt algorithm of [27] by additionally
introducing a consensus algorithm.

Due to the high computational complexity of the S-WTA
problem and its variant, various heuristic and metaheuristic
algorithms have been proposed to handle these problems. In
the study of Chen et al. [29], a particle swarm optimization
algorithm is put forward to solve the S-WTA problem. Unlike
previous literature on S-WTA, this work features a nonlinear
objective aimed at minimizing the total survival probabilities
of all targets, while allowing multiple weapons to be assigned
to the same target at once. Xin et al. [6] constructed an
S-WTA model that considers the minimization of the total
threat value for all targets. They developed a marginal-return-
based constructive heuristic, where each iteration selects one
sensor–weapon–target triplet and exploits problem-specific
knowledge contained in the marginal returns. Li et al. [7]
studied a synthetical Sensor-Weapon-Target model with the
objective of maximizing the expected value of detected threat
from sensors and eliminated threat from weapons. They devel-
oped a novel genetic algorithm to address this problem where
a problem-specific population initialization method based on
prior knowledge is designed. Zhang et al. [30] studied an S-
WTA problem in ground-to-air defense, which considers the
interdependencies of sensors and heterogeneous weapons. The
minimization of total expected threat value from targets is
considered in their model. They proposed a novel evolutionary
algorithm to obtain the sequential interception schemes and
adopted three special coding methods to build the population
individuals. In summary, the previous works show that: a) no
study has addressed the minimum desired probability of target
destruction when conducting the joint allocation of weapons
and sensors. The requirement to achieve a specific level of
destruction for all targets imposes nonlinear constraints, signif-
icantly improving the complexity of solving this problem, and
b) many heuristic algorithms are well designed in the literature,
yet there is a lack of methods to establish the bounds for
the sensor-weapon-target assignment problem. In this paper,
we fill the gaps by formulating a new problem in network-
centric warfare and constructing linear approximation models
to obtain valid upper and lower bounds.

III. PROBLEM DESCRIPTION AND FORMULATION

We are given a set of sensors S, a set of weapons W
and a set of targets T . Let pik denote the probability of
target k ∈ T being detected by sensor i ∈ S, and let qjk
represent the probability of target k ∈ T being destroyed
by weapon j, provided that the target has been detected. Let
aik and bjk denote the cost of assigning sensor i ∈ S and
weapon j ∈ W to target k ∈ T , respectively. A minimum
destruction probability u is desired for each target. The aim is
to assign weapons and sensors to targets to minimize the total
assignment cost while ensuring minimum desired destruction
probability for each target.

To formulate this problem, we define two sets of binary
decision variables, xik and yjk, where xik takes 1 if sensor
i is assigned to target k and 0 otherwise, and yjk takes 1
if weapon j is assigned to target k and 0 otherwise. Thus,
the probabilities of target k being detected and destroyed
can be expressed as Ak = 1 −

∏
i∈S(1 − pik)xik and

Bk = 1 −
∏
j∈W (1 − qjk)yjk , respectively. Therefore, we

can formulate the S-WTA problem as the following integer
nonlinear formulation.

(S-WTA) min
∑
i∈S

∑
k∈T

aikxik +
∑
j∈W

∑
k∈T

bjkyjk (1)

s.t.
∑
k∈T

xik ≤ 1,∀i ∈ S. (2)∑
k∈T

yjk ≤ 1,∀j ∈W. (3)∑
i∈S

xik ≥ 1,∀k ∈ T. (4)∑
j∈W

yjk ≥ 1,∀k ∈ T. (5)

AkBk ≥ u,∀k ∈ T. (6)
xik ∈ {0, 1},∀i ∈ S, k ∈ T. (7)
yjk ∈ {0, 1},∀j ∈W,k ∈ T. (8)

The objective (1) is to minimize the total cost of assigning
sensors and weapons to targets. Constraints (2) and (3) ensure
that each sensor or weapon can only be assigned to at most one
target, respectively. Constraints (4) and (5) ensure that at least
one sensor and one weapon are assigned to each target, respec-
tively. Constraint (6) guarantees that the desired destruction
probability of each target is satisfied. Finally, constraints (7)
and (8) define the domains of decision variables.

IV. LOWER AND UPPER BOUNDS

In this section, we will first comprehensively analyze the
S-WTA problem and then derive its valid lower and upper
bounds. We will utilize the original formulation’s approxi-
mations to achieve this. These linear approximations will not
only serve as benchmarks for accessing our heuristic, which
is explained in Section VI but will also enhance our heuristic
further.

A. Lower bound

We first construct an approximation that yields a valid
lower bound. The central concept involves approximating
the nonlinear constraint (6) with linear constraints. For this
purpose, we restate constraint (6) as follows:

Ak ≥ u1 and Bk ≥ u2.

where (u1, u2) belongs to the set U = {(u1, u2) | u1u2 ≥
u, u ≤ u1, u2 ≤ 1}. Although the set U contains infinite
elements, we can approximate constraint (6) using a subset
of U . Let U ′ ⊂ U be a finite set consisting of n + 1
elements. To construct set U ′, we sample a series of values
for u1, which are collected in the set {a0, a1, . . . , an} and
let the corresponding values of u2 be collected in the set
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{b0 = u/a0, b1 = u/a1, . . . , bn = u/an}. A simple way
to generate these values is to set al = u + l(1 − u)/n
for each l ∈ {0, 1, . . . , n}. For each target k, we employ a
binary variable zkl to indicate which pair of values (u1, u2) is
active for the target in the solution. Then, we can approximate
constraint (6) using the following relationships:

Ak ≥
n∑
l=1

al−1zkl,∀k ∈ T. (9)

Ak ≤
n∑
l=1

alzkl,∀k ∈ T. (10)

Bk ≥
n∑
l=1

blzkl,∀k ∈ T. (11)

n∑
l=1

zkl = 1,∀k ∈ T. (12)

zkl ∈ {0, 1},∀l ∈ {1, 2, . . . , n}, k ∈ T. (13)

Constraints (9) and (10) restrict the probability of target k
being detected by sensors, and constraint (11) limits the
probability of target k being destroyed by weapons. Constraint
(12) requires that exactly one pair of values of (u1, u2) is
chosen per target. Therefore, replacing constraint (6) of (S-
WTA) with constraints (9)–(13) yields:

(LB) min
∑
i∈S

∑
k∈T

aikxik +
∑
j∈W

∑
k∈T

bjkyjk

s.t. (2)–(5), (7)–(8), (9)−(13).

Proposition 1. The optimal objective value of formulation
(LB) is a valid lower bound of the S-WTA problem.

Proof. See Section I-A of the online supplement.

Constraints (9)–(11) can be linearized with the following
steps. Let’s take constraint (9) as an example. Because zkl is
a binary variable and constraint (12) restricts only one zkl = 1,
the following equivalence relations are valid.

Suppose any zkl = 1, for this l we get

1−
∏
i∈S

(1− pik)xik ≥ al−1. (14)

The above constraint can be linearized using the logarithmic
transformation [4], [8]. In particular, by taking the logarithm
of both sides of the constraint, we have the following linear
constraint: ∑

i∈S
ln(1− pik)xik ≤ ln(1− al−1). (15)

Considering all possible zkl, the final linear constraint is

∑
i∈S

ln(1− pik)xik ≤
n∑
l=1

ln(1− al−1)zkl. (16)

We can employ the above procedure to linearize the non-
linear constraints (10) and (11).

B. Upper Bound

Similarly to how formulation (LB) is constructed, the fol-
lowing equations yield another approximation of constraint
(6).

Ak ≥
n−1∑
l=1

alzkl,∀k ∈ T. (17)

Ak ≤
n−1∑
l=1

al+1zkl,∀k ∈ T. (18)

Bk ≥
n−1∑
l=1

blzkl,∀k ∈ T. (19)

n−1∑
l=1

zkl = 1,∀k ∈ T. (20)

zkl ∈ {0, 1},∀l ∈ {1, 2, . . . , n− 1}, k ∈ T. (21)

By replacing constraint (6) of model (S-WTA) with (17)–(21),
we obtain the following approximation model:

(UB) min
∑
i∈S

∑
k∈T

aikxik +
∑
j∈W

∑
k∈T

bjkyjk

s.t. Constraints (2)–(5), (7)–(8), (17)–(21).

Proposition 2. The optimal objective value of formulation
(UB) is a valid upper bound of the S-WTA problem.

Proof. See Section I-B of the online supplement.

We can utilize the same method of transforming constraint
(9) into (16) to linearize the model (UB).

(a) Approximation–LB (b) Approximation–UB

Fig. 1. Linear approximations of the nonlinear constraint (n = 4, u = 0.8).

Figure 1 illustrates the approximations of constraint (6) with
u = 0.8. The curve in the figure represents AkBk = u. The
sample set U ′ is given by u1 ∈ {0.8, 0.85, 0.9, 0.95, 1} and
u2 ∈ {1, 0.8/0.85, 0.8/0.9, 0.8/0.95, 0.8}.The both approxi-
mations have n = 4 and n− 1 = 3 segments, respectively.

V. SOLUTION METHOD

Due to the non-linearity and non-convexity, it is challenging
to solve the proposed S-WTA problem exactly. Moreover,
heuristics are efficient methods for solving large-scale com-
binatorial optimization problems, i.e., quadratic assignment
problem [31], bandwidth coloring problem [32], service de-
ployment problem [33]. In this section, we present an adaptive
large neighborhood search algorithm to find sub-optimal solu-
tions effectively. The proposed algorithm alternates between
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destruction and repair phases, relying on historical search
information and model-driven repair operations. In the destruc-
tion phase, an operator is selected from multiple destruction
operators and applied to destroy a reference solution. The
repair phase optimizes a subproblem that treats the remaining
assignments as decision variables and maintains the assign-
ments in the destroyed solution.

The framework of our proposed adaptive large neighbor-
hood search algorithm is outlined in Algorithm 1. At the
outset of this algorithm, the associated elements, such as
destruction operators and their weights, are initialized (Line
1). Subsequently, an initial feasible solution π∗ is constructed
using a greedy heuristic. This approach takes into account both
the increase in cost and detection/destruction probability of
assignments (Line 2). In the destruction phase, one destruction
operator θ is selected adaptively from a set of operators D
based on the historical performance of each operator (Line
4). This chosen operator is applied to destroy the reference
solution π∗, which is the best solution found so far, to generate
an incomplete solution πD (Line 5). More specifically, certain
sensors or weapons are removed based on the operators in
this phase. Afterward, a reduced-size subproblem is generated,
and only its destroyed parts are optimized (Line 6), i.e., the
decision variables related to the assignments not involved in
πD while maintaining the other variables at the same values
as πD. Finally, a general solver is used to solve the integer
programming model SP, which is constructed for the above
subproblem, in order to repair the destroyed solution and
obtain a feasible solution π (Line 7). The newly discovered
best solutions are recorded and serve as the new reference
solutions (Line 9). Meanwhile, the weights of the operators
Ω are updated based on their previous performances (Line
11). These above phases are repeated until a predetermined
termination criterion, such as reaching a computational time
limit or finding the optimal solution (Line 3), is met.

Algorithm 1 Adaptive large neighborhood search scheme
1: Initialize destruction operators D and their weights Ω =
{η, . . . , η}, the best found solution π∗ ← ∅ and its
objective f∗ ←∞, a given problem instance I .

2: (π∗, f∗) ← GenerateInitialSolution (I).
3: while the termination criterion is not met do
4: θ ← SelectDestructionOperator(D,Ω).
5: πD ← Destroy(π∗, θ).
6: SP ← ConstructSubmodel(πD).
7: (π, f ) ← Repair(SP).
8: if f < f∗ then
9: π∗ ← π, f∗ ← f .

10: end if
11: Update(Ω).
12: end while
13: return (π∗, f∗).

We consider the main procedures in Algorithm 1 to analyze
its computational complexity. The initial solution phase adopts
a greedy list that includes O((|S|+ |W |)|T |) elements. It con-
structs the initial solution by selecting the elements one by one.
Thus its time complexity is bounded by O((|S| + |W |)|T |).

The time complexity of the search phase, i.e., line 3 to line 12,
is O(ζ(δ(|S|+ |W |) + µ)), where ζ denotes the total number
of iterations, δ is a parameter of destruction level (see Section
V-B) and µ denotes the time for submodel solving (see Section
V-D). To summarize, the total computational complexity of our
algorithm is O((ζδ + |T |)(|S|+ |W |) + ζµ).

A. Generation of initial solution

The initial solution is generated by greedily assigning the
sensors and weapons to targets until the prescribed destruction
probability of each target is satisfied. It mainly consists of the
following three steps. First, a sorted list Glist = {(r, t) |
r ∈ S ∪ W, t ∈ T} is constructed with each element (r, t)
representing the assignment of resource (a weapon or a sensor)
r to target t. The elements in Glist are sorted in ascending
order of α(r,t) defined by

α(r,t) =

{
γart − prt, r ∈ S
γbrt − qrt, r ∈W (22)

where γ is a given tradeoff parameter. Equation (22) considers
the cost and destruction probability of each assignment. Note
that a smaller value of γ can help ensure feasibility for
instances with a large desired destruction probability u. The
first pair (r∗, t∗) in Glist is selected according to an alter-
native assignment principle to accommodate the destruction
probability requirement. It is clear that the multiplicative form
of Ak ×Bk in constraint (6) presents a diminishing marginal
utility. Specifically, if Ak is larger than Bk, improving Ak by
assigning additional sensors is not as effective as assigning
weapons to improve Bk. The alternative assignment principle
essentially improves the balance between Ak and Bk. We use
an approximation strategy by alternatively assigning weapons
and sensors. Let Mk and Nk be the numbers of sensors and
weapons assigned to each target, respectively. If Mk > Nk,
we consider weapons as the next resource to be assigned to
the target k, and sensors otherwise, where ties are broken
arbitrarily. For each iteration, we take the first pair in Glist
as (r∗, t∗). If r∗ ∈ S and Mt∗ ≤ Nt∗ , or if r∗ ∈ W
and Mt∗ ≥ Nt∗ , (r∗, t∗) satisfies the alternative assignment
principle. Otherwise, the next pair in Glist is taken as
(r∗, t∗) until the principle is satisfied. When no qualified
(r∗, t∗) exists and Glist is non-empty, we override this rule
by simply using the first pair in Glist.

Finally, we assign the resource r∗ to target t∗ and remove
the chosen pair (r∗, t∗) from Glist. If the target t∗ satisfies
the minimum destruction probability u, we remove all the pairs
(r, t∗) from Glist. The selection and assignment of (r∗,t∗)
are repeated until all targets satisfy the minimum destruction
probability u, resulting in a feasible initial solution.

B. Destruction phase

For the reference solution π∗, the destruction phase employs
multiple strategies to destroy a part of this solution, meaning
it removes a certain number of sensors and weapons assigned
to the targets. Suppose that solution π is represented by the
assigned set of sensors πSt and the set of assigned weapons
πWt for each target t ∈ T . To produce a destroyed solution πD,
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we propose six destruction operators that work by removing
resources or targets, which are referred to as resources destruc-
tion operators (R-D, including S-D, W-D and SW-D) or targets
destruction operators (T-D, including TS-D, TW-D and TSW-
D). Furthermore, the removal of sensors, weapons or both is
further distinctively considered. In addition, we probabilisti-
cally bias the selection of such solution elements that yield
a larger cost reduction when being removed. Specifically, the
proposed destruction operators are presented as follows.
• Sensor-Destroy (S-D). This operator removes δ sensors

from πS . Suppose sensor s is assigned to target t,
the probability of s being removed, denoted by ψs, is
calculated by

ψs =
ast∑

t∈T
∑
s∈πS

t
ast

(23)

• Weapon-Destroy (W-D). This operator removes δ
weapons from πW . The probability of weapon w being
removed, denoted by ψw, is calculated by

ψw =
bwt∑

t∈T
∑
w∈πW

t
bwt

(24)

• Sensor&Weapon-Destroy (SW-D). This operator removes
δ sensors and weapons from πS and πW , where ψs and
ψw are calculated by

ψs =
ast∑

t∈T
∑
s∈πS

t
ast +

∑
t∈T

∑
w∈πW

t
bwt

(25)

ψw =
bwt∑

t∈T
∑
s∈πS

t
ast +

∑
t∈T

∑
w∈πW

t
bwt

(26)

• Target Sensor-Destroy(TS-D). This operator selects δ
targets and removes all sensors assigned to them from πS .
The probability ψSt of target t being selected is calculated
by

ψSt =

∑
s∈πS

t
ast∑

t∈T
∑
s∈πS

t
ast

. (27)

• Target Weapon-Destroy(TW-D). This operator selects δ
targets and removes all weapons assigned to them from
πW . The probability ψWt of target t being selected is
calculated by

ψWt =

∑
w∈πW

t
bwt∑

t∈T
∑
w∈πW

t
bwt

. (28)

• Target Sensor&Weapon-Destroy(TSW-D). This operator
selects δ targets and removes all sensors and weapons
assigned to them from πS and πW . Then the probability
ψt of target t being selected is

ψt =

∑
s∈πS

t
ast +

∑
w∈πW

t
bwt∑

t∈T
∑
s∈πS

t
ast +

∑
t∈T

∑
w∈πW

t
bwt

. (29)

The first three R-D (resource destruction) operators can
be considered the traditional worst removal operators, which
improve the objective function by removing high-cost assign-
ments. However, these R-D operators may be shortsighted for
large-sized problems that are difficult to solve. To address this
issue, we also employ the T-D (target destruction) operators

to expand the neighborhood, which removes all the assigned
resources (weapons and sensors) for a set of chosen targets. In
general, the T-D operators always destroy more assignments
than the R-D operators because the R-D operators only remove
δ resources, while the T-D operators remove δ targets, each of
which has at least one resource. Therefore, these two types of
destruction operators mainly differ in the level of destruction.
Their performance is evaluated in the numerical experiments
in Section VI-D.

C. Adaptive selection mechanism

Given that the destruction phase employs six destruction
operators, it thus needs to decide which operator should be
selected for each iteration. We use the adaptive mechanism
proposed in Ropke et al. [34] to assign each destruction
operator a probability of being selected. The probability of
operator θ being selected is computed as

prob(θ) =
Ωθ∑

θ′∈D Ωθ′
, (30)

where the weights Ω of all operators are initialized to the
same value η and updated based on the performance of these
operators. Specifically, the chosen destruction operator for
each iteration is given a score based on its performance in
the repair phase, depending on whether a new best solution,
a feasible solution, or no feasible solution is discovered (See
Section V-D). We set the basic scores for the three cases as
v1, v2, v3, with v1 > v2 > v3. The weight is not updated for
each iteration to avoid some operators having excessively high
or low weights. Instead, the weights Ω are updated every 10
iterations based on the cumulative scores computed by

Ωθ = λΩθ + (1− λ)
ξθ

max{ωθ, 1}
, (31)

where ξθ is the cumulative score of operator θ in the current
10 iterations, ωθ is the number of times the operator θ has
been called, and λ is the discount coefficient.

D. Repair phase

The destroyed solution is subjected to the repair phase to
retain feasibility. This is achieved by constructing and solving
a mixed integer programming model. The fundamental idea
of this model-driven repair phase is to construct a subproblem
by optimizing the destroyed part while keeping the rest of
the solution fixed, making it solvable by a general-purpose
solver. Three types of subproblems are generated based on
the resources involved in the destruction operators. For the
destruction operators that handle sensors (S-D or TS-D), the
subproblem SP1 only considers the sensors not assigned to any
target and the targets with unsatisfied destruction probability.
For the destruction operators that only handle weapons (W-D
or TW-D), the subproblem SP2 only considers the weapons not
assigned to any target and the targets with unsatisfied destruc-
tion probability. For the destruction operators that handle both
sensors and weapons (SW-D or TSW-D), the subproblem SP3
considers both the sensors and weapons not assigned to any
target and the targets with unsatisfied destruction probability.
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Specifically, the subproblem SP1 can be formulated as
follows:

(SP1) min
∑
i∈S′

∑
k∈T ′

aikxik (32)

s.t.
∑
k∈T ′

xik ≤ 1, ∀i ∈ S′, (33)∑
i∈S′

xik ≥ 1, ∀k ∈ T ′, (34)

ΦWk (1− ΦSk
∏
i∈S′

(1− pik)xik) ≥ u, ∀k ∈ T ′,

(35)
xik ∈ {0, 1}, ∀i ∈ S′, k ∈ T ′, (36)

where S′ = S/πS denotes the set of unassigned sensors,
and T ′ denotes the set of targets with unsatisfied desired
probability, and ΦSk is the destruction probability contributed
by the sensors not removed for target k. As SP1 does not
consider the assignment of weapons to targets, i.e., the values
of the involved variables are fixed at the same values as
the reference solution, we denote 1 −

∏
y∈W (1 − qjk)yjk of

constraint (6) in the original problem as a constant ΦWk for
each target k. The objective is to minimize the total assignment
cost of the sensors. Note that Eq. (35) can be linearized as∑

i∈S′
ln(1− pik)xik ≤ ln

1− u
ΦW

k

ΦSk
, ∀k ∈ T ′. (35’)

Similarly, SP2 can be formulated as:

(SP2) min
∑
j∈W ′

∑
k∈T ′

bjkyjk (37)

s.t.
∑
k∈T ′

yjk ≤ 1, ∀j ∈W ′, (38)∑
j∈W ′

yjk ≥ 1, ∀k ∈ T ′, (39)

ΦSk (1− ΦWk
∏
j∈W ′

(1− qjk)yjk) ≥ u, ∀k ∈ T ′, (40)

yjk ∈ {0, 1}, ∀j ∈W ′, k ∈ T ′. (41)

where the nonlinear constraint (40) can be restate as:∑
j∈W ′

ln(1− qjk)yjk ≤ ln
1− u

ΦS
k

ΦWk
, ∀k ∈ T ′. (40’)

and the subproblem SP3 can be formulated as follows:

(SP3) min
∑
i∈S′

∑
k∈T ′

aikxik +
∑
j∈W ′

∑
k∈T ′

bjkyjk (42)

s.t.
∑
k∈T ′

xik ≤ 1, ∀i ∈ S′ (43)∑
k∈T ′

yjk ≤ 1, ∀j ∈W ′, (44)(
1− ΦSk

∏
i∈S′

(1− pik)xik

)
1− ΦWk

∏
j∈W ′

(1− qjk)yjk

 ≥ u, ∀k ∈ T ′, (45)

xik ∈ {0, 1}, ∀i ∈ S′, k ∈ T ′, (46)
yjk ∈ {0, 1}, ∀j ∈W ′, k ∈ T ′. (47)

Constraint (45) can be linearized using the method introduced
in Section IV-B.

Note that due to the potential hardness of the subproblems
when certain variables are fixed, the repair phase may not
produce a feasible solution within the given time limit µ.
Nonetheless, the adaptive mechanism ensures that more fea-
sible solutions are generated as far as possible by assigning a
lower score to such a destruction operator.

VI. COMPUTATIONAL RESULTS

In this section, we conduct computational experiments to
evaluate the performance of the linear approximations for
lower and upper bounds and the adaptive large neighborhood
search algorithm. Moreover, the effectiveness of the model-
driven repair phase and the adaptive operator selection mech-
anism is analyzed through controlled experiments.

A. Instances and computational setups

We generate a set of 30 instances by referring to Xin
et al. [6], which can be downloaded at https://github.com/
NWPU-ORMS/SWTA. Specifically, aik and bjk are sampled
from [1, 1000], pik from [0.50, 0.95], and qjk from [0.72, 0.96],
uniformly. Our preliminary experiments find that small in-
stances with no more than 40 sensors and 40 weapons can be
solved to optimality by both the Gurobi solver and our ALNS
algorithm within no more than one minute. Hence, the results
for these instances are not reported. For each combination of
the numbers of sensors, weapons and targets, we generate
10 independent instances, where the smallest instance is of
size S60-W60-T40 and the largest is of size S500-W500-
T360. In addition, the minimum desired probability for target
destruction is u ∈ {0.8, 0.85, 0.9}. Hence, we obtained 30
differentiated instances that are used in our experiments.

Our ALNS algorithm was coded in the C++ programming
language and compiled with the GCC 10.2.0 compiler. Table I
lists the parameter settings of ALNS. Preliminary experiments
indicate that when the weight γ is biased towards the cost, the
quality of the initial solution is usually better. However, we
may have a high chance of obtaining an infeasible solution.
Hence, we set γ = 10−3 for instances with u = 0.8 since
the constraint (6) is easily satisfied. For other instances, we
set γ = 10−4 or 10−5. For the destruction degree δ, we set
0.2 × (S + W ) for instances starting from S60-W60-T40 to
S250-W250-T160 and 0.1 × (S + W ) for other instances.
Moreover, we set the time limit µ = 1 second for solving
each subproblem. The weight of the operators is discounted by
λ = 0.95 after a certain number of iterations. All experiments
are conducted on a computing cluster equipped with dual
Intelr Xeonr Gold 6226R CPU and 256 GB RAM on each
node. The approximation models, (LB) and (UB), and the
subproblem models, (SP1)–(SP3), are solved using the Gurobi
9.0.3 solver.

https://github.com/NWPU-ORMS/SWTA
https://github.com/NWPU-ORMS/SWTA
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TABLE I
SETTINGS OF PARAMETERS FOR ALNS

Parameters Section Description Values

γ V-A trade-off coefficient of cost and probability in
the initial solution 10−3, 10−4, 10−5

δ V-B number of elements selected to destroy {0.1, 0.2}×(S+W)

η V-C weight of destruction operators at the beginning
of the algorithm 1

v1, v2, v3 V-C score for destruction operator in each iteration 4, 2, 0
λ V-C discount coefficient of the last weight 0.95
µ V-D time limit(s) for optimization in each iteration 1

B. Evaluation of lower and upper bounds

The approximation models (LB) and (UB) with many de-
composed parts n may yield tighter bounds but are harder
to solve. In the experiments, we set seven different levels of
n ∈ {20, 50, 100, 200, 300, 500, 1000}. For each instance and
each value of n, we set a time limit of 10 hours and record the
obtained best lower and upper bounds and the computational
time.

Table II presents the lower and upper bounds obtained
for each instance. The column “Obj” represents the optimal
objective value of the respective model. Note that “-” means
that the optimal solution of the corresponding models (LB)
and (UB) cannot be found within the time limit, which also
indicates that no valid bounds can be found for these instances
at given n. This table shows that the approximation method
can obtain lower and upper bounds for 18 instances but fails
for others. Moreover, the lower and upper bounds are equal for
10 instances, indicating that these solution values are optimal
for S-WTA. Although the gaps between the lower and upper
bounds, calculated as (UB−LB)/LB× 100%, are generally
less than 2%, the runtime of the Gurobi solver increases
significantly as the instance size increases. In conclusion, this
experiment shows that our proposed approximation methods
can obtain good bounds for most instances.

Table III presents detailed results of using different n for
the 10 instances with proved optimal solutions. For each
instance we increase the value of n from 20 to 1000 and solve
the approximation models (LB) and (UB) to reach optimal
solutions of the models. We mark in bold such a pair of lower
and upper bounds that hits the optimal value first. Let’s use
S60-W60-T40 with u = 0.8 as an example. The optimal value
4110 is obtained by setting n = 20 to solve the approximation
model (UB) and setting n = 1000 to solve (LB). For this
instance, we prove its optimal objective value to be 4110 until
we increase n to 1000.

The results in Table III reveal that solving the approx-
imation models can obtain proven optimal solutions for 7
instances when n = 1000 and 500 and for 3 instances
when n = 300, 200, 100, respectively. As n increases, the
proven optimal solutions can be found for more instances.
However, large values of n lead to an increased number
of binary variables zkl in models (LB) and (UB). And the
required time for solving the approximation models grows
as the value of n increases. Hence, both upper and lower
bounds can be improved by progressively increasing n, but
there’s a possibility of encountering instances where solving
time exceeds the given limit. When determining an appropriate
setting of n, a trade-off exists between the solution quality

obtained and the time taken to solve the resulting models.
In our experiments, increasing n to 1000 can achieve valid
bounds that are either proven optimal or exhibit a tight gap
of less than 2% for 18 out of 30 instances. However, for the
other 12 instances, obtaining valid bounds within a long time
limit is challenging. Therefore, the experiments for computing
lower and upper bounds are terminated at n = 1000.

C. Comparisons of different algorithms

To the best of our knowledge, no study has addressed
the minimum desired probability of target destruction when
conducting the joint allocation of weapons and sensors. We
note that Kwon et al. [4], [8] investigated a WTA problem
that shares a similar objective and nonlinear constraint with
our S-WTA. However, expanding their methods to address
the S-WTA problem is not straightforward due to inherent
differences in problem structures and constraints. In their prob-
lem, the left-hand side of the nonlinear constraint comprises
a constant and a product term. This structure allows for the
linearization of the nonlinear constraint through logarithmic
transformation. However, in our S-WTA problem, the left-
hand side of the nonlinear constraint consists of a product
term involving two factors, and each of these factors resembles
the product term observed in the WTA problem. Thus, a
direct application of logarithmic transformation is not feasible
because of the nesting product terms in this scenario. To assess
the performance of the ALNS algorithm, we compare it with
the following four reference methods:
• UB model: It solves the model (UB) presented in section

IV by Gurobi directly. From Table II, 9 out of 18
instances obtained the best solution of (UB) with n = 100
using the Gurobi solver. Hence, we opt to set n = 100
for this method.

• ALNS-H: It replaces the model-driven repair phase in
ALNS with heuristic repair operators, including greedy
and regret repair operators. The greedy repair operators
assign sensors or weapons by combining multiple greedy
rules, including the lower cost rule, higher probability
rule, and a lower ratio of cost/probability rule. The regret
repair operators give each infeasible target a regret value.
Suppose C(t) = {C1, C2, . . . , Ck} is the sorted set of
costs by assigning sensors or weapons to target t, the
regret value is defined as

∑k
i=1(Ci − C1), and we set

k = 2, 3, 4 for different regret operators. Resources with
lower costs will be assigned to targets with higher regret
values at an earlier stage.

• MRBCH: The algorithm was proposed by Xin et al. [6]
for solving the S-WTA problem with target threat value
minimization. The fundamental idea behind this construc-
tive heuristic involves iteratively assigning appropriate
weapons or sensors to targets based on their marginal re-
turn. Here, we adopt this algorithm by modifying the way
of computing the marginal return. Specifically, our study
additionally consider the assignment costs associated with
weapons and sensors, a factor that was overlooked in the
original paper. Hence, we calculate the marginal return
of each potential assignment (s, w, t) as p× (1000− c),
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TABLE II
LOWER AND UPPER BOUNDS OF S-WTA WITH 36000s

Instances LB UB UB−LB
LB

(%)
S W T u Obj Time(s) n Obj Time(s) n
60 60 40 0.80 4110 1039 1000 4110∗ 25 20 0.00

0.85 5740 2781 500 5740∗ 1260 300 0.00
0.90 8875 1771 100 8875∗ 470 20 0.00

90 90 60 0.80 4040 8105 1000 4040∗ 686 100 0.00
0.85 5211 6150 500 5240 1255 100 0.56
0.90 8064 11539 200 8064∗ 4201 100 0.00

120 120 80 0.80 3997 9405 1000 3997∗ 765 100 0.00
0.85 5235 2000 100 5235∗ 7499 500 0.00
0.90 7654 33847 300 7654∗ 8115 50 0.00

150 150 100 0.80 4284 35572 1000 4284∗ 545 20 0.00
0.85 5197 7590 200 5204 3355 100 0.13
0.90 7657 21163 20 - - - -

200 200 120 0.80 3255 27028 1000 3255∗ 1538 100 0.00
0.85 4178 21481 500 4183 10295 300 0.12
0.90 5663 18300 100 5731 28246 100 1.20

250 250 160 0.80 3802 6728 200 3818 1136 20 0.42
0.85 4847 25086 200 4865 12711 100 0.37
0.90 - - - - - - -

300 300 200 0.80 4125 18136 200 4143 10985 100 0.43
0.85 5314 30948 50 - - - -
0.90 - - - - - - -

350 350 250 0.80 4668 24841 50 4758 24562 50 1.93
0.85 - - - - - - -
0.90 - - - - - - -

400 400 300 0.80 - - - - - - -
0.85 - - - - - - -
0.90 - - - - - - -

500 500 360 0.80 - - - - - - -
0.85 - - - - - - -
0.90 - - - - - - -

Note: UB with ∗ denotes the optimal value

TABLE III
DETAILED RESULTS OF BOUNDS WITH DIFFERENT n FOR PROVEN OPTIMAL INSTANCES

Instances n = 20 50 100 200 300 500 1000

S W T u LB UB LB UB LB UB LB UB LB UB LB UB LB UB
60 60 40 0.80 3929 4110 3999 4114 4019 4110 4094 4110 4094 4110 4094 4110 4110 4110
60 60 40 0.85 5538 5759 5687 5742 5716 5742 5720 5742 5720 5740 5740 5742 5740 5740
60 60 40 0.90 8771 8875 8794 8875 8875 8875 8875 8875 8875 8875 8875 8875 8875 8875
90 90 60 0.80 3802 4071 3934 4060 3958 4040 4021 4040 4021 4040 4021 4040 4040 4040
90 90 60 0.90 7779 8167 7898 8064 8005 8064 8064 8064 8064 8064 8064 8064 - 8237

120 120 80 0.80 3891 4000 3947 4000 3971 3997 3971 3997 3971 3997 3971 3997 3997 3997
120 120 80 0.85 5049 5268 5203 5245 5235 5244 5235 5244 5235 5244 5235 5235 5235 5235
120 120 80 0.90 7472 7699 7589 7654 7618 7654 7618 7654 7654 7654 - 7659 - -
150 150 100 0.80 4098 4284 4180 4307 4210 4284 4255 4284 4255 4284 4255 4284 4284 4284
200 200 120 0.80 3181 3290 3227 3260 3240 3255 3243 3255 3250 3255 3254 3255 3255 3255

where p and c denote the increased destruction probability
and increased objective value brought by this assign-
ment. For each iteration the assignment with the highest
marginal return is executed. By adopting this strategy, the
resulting solution is more likely to be feasible and obtains
a better objective value.

• VLSN: The adapted implementation of the VLSN algo-
rithm, also called ejection chain algorithm, follows the
core concept proposed by Ahuja et al. [9]. The algo-
rithmic framework is tailored to accommodate the joint
assignment of sensors and weapons. Initially, the solution
is generated like ALNS. Subsequently, we initialize the
chain length to 1 and set the longest length to 3. During
the search, the assignment scheme of sensors/weapons re-

mains fixed, while the remaining execute cyclic exchange
with length k. If no better solution is identified, k is
incremented by one. If k exceeds the longest length, we
fix the current solution of weapons/sensors and continue
the search in sensors/weapons. The algorithm terminates
when no improved solution can be found in any neigh-
borhood.

We first analyze the running profile of the ALNS algo-
rithm. Figure 2 shows how the objective value varies as
the iteration increases on the instance S60-W60-T40 with
different destruction probabilities u = 0.80, 0.85, 0.90. The
horizontal axis represents the number of iterations, while
the vertical axis denotes the gap between the best objective
value obtained at the given iteration to the optimal objective
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Fig. 2. The convergence process of instance S60-W60-T40.

value. We can observe that in the first 100 iterations, the gap
dramatically decreases from 100% to 2%, 185% to 6% and
210% to 15% under u = 0.80, 0.85, 0.90, respectively. On
the contrary, the gap can further decrease and converges to
optimal or suboptimal solution in the following large number
of iterations. The same convergence trend can be found for
the other instances. This experimental analysis indicates that
our algorithm presents good search performance.

Furthermore, we conduct an additional experiment using
a running time of 300 seconds to compare the proposed
ALNS algorithm with four reference methods. For instances
where the optimal solution is known, the execution of each
algorithm is terminated upon reaching the optimal values.
We record the average objective value found by each al-
gorithm and the computational time required to attain this
value. In addition, we record the objective percentage gap
between ALNS and the other four algorithms, calculated by
(ObjA−ObjALNS)/ObjALNS×100, where ObjA is the objective
value of the comparison algorithms. A positive value of gap%
in columns “UB model”, “ALNS-H”, “MRBCH” and “VLSN”
means they are worse than ALNS. For a detailed analysis, we
divide the 30 instances into small and large groups according
to the instance size. The small group includes instances with
no more than 200 sensors/weapons, while the large group
includes the other instances. The detailed experimental results
are presented in online supplement.

TABLE IV
COMPARISON RESULTS OF ALNS WITH FOUR REFERENCE METHODS

Compared Methods Instances Destruction Probability(u) p–valueSmall Large 0.80 0.85 0.90
UB model 4 11 2 5 8 0.005745
ALNS-H 15 15 10 10 10 9.127× 10−7

MRBCH 15 15 10 10 10 7.151× 10−5

VLSN 15 15 10 10 10 9.127× 10−7

Table IV presents the summarized results by comparing
ALNS with the reference methods. Each column under “In-
stances” or “Destruction Probability(u)” records the count of
instances where ALNS outperformed the compared method.
For the small instances, we see that ALNS outperforms the
UB model for 4 out of 15 instances. For the instances where
ALNS performs worse, the objective gaps to the UB results
are generally smaller than 2%. This outcome demonstrates that

the performance of ALNS is competitive with that of the UB
model for solving small instances. For the large instances,
ALNS performs much better for 11 out of 15 instances.
Especially for instances S350-W350-T250 to S500-W500-
T360 with u = 0.9, the objective gaps are more than 100%.
The superiority over the UB model is significantly better by
obtaining a p-value of 0.005745.

Compared with the variant ALNS-H, our proposed ALNS
algorithm performs significantly better by obtaining a p-value
of 9.127 × 10−7 on all 30 instances. In addition, ALNS-H
achieves better results than the UB model for large instances
with u = 0.9. This indicates that the Gurobi solver cannot ob-
tain acceptable solutions for large instances with high desired
destruction probability within a reasonable running time.

In addition, our ALNS algorithm outperforms the refer-
ence algorithms MRBCH and VLSN. Although MRBCH and
VLSN obtain their final solutions rapidly, the average gaps
of MRBCH and VLSN are quite large. Moreover, wilcoxon
testings in terms of solution quality indicate that our ALNS
algorithm is significantly better than MRBCH and VLSN by
obtaining the p-values of 7.151 × 10−5 and 9.127 × 10−7,
respectively. In particular, MRBCH cannot yield feasible so-
lutions for all instances with u = 0.9. A similar observation
applies to the comparison between VLSN and ALNS, where
the former has higher gaps for instances with u = 0.9. This
analysis highlights the challenge associated with the nonlinear
constraints in our S-WTA problem, particularly when dealing
with higher probabilities of destruction.

D. Analysis of destruction strategies and adaptive mechanism

Recall that the destruction phase of ALNS adaptively selects
a destruction operator among six destruction operators by an
adaptive mechanism. In this subsection, we first analyze the
role of different destruction operators in solving instances.
During the ALNS execution, we additionally collect the num-
ber of times each of the six destruction operators updated
the best solution, represented by {d1, d2, . . . , d6}. Then, we
summarize the updating frequency of the ith destruction
operator by Fi = di/

∑6
i=1 di. Table V presents the frequency

of updating the best solution for each destruction operator in
the ALNS execution.

From Table V, we find that the three operators based on
target-destruction, i.e., TS-D, TW-D, TSW-D, obtain the sum
average frequencies of 0.64, 0.68, and 0.73 when u = 0.8,
u = 0.85, u = 0.9, respectively. This indicates that target
destruction operators are more important than resource de-
struction operators in ALNS.

On the other hand, the frequency of each destruction opera-
tor varies for different instances. For example, the destruction
operator TSW-D performs much better for instances with
a required small destruction probability u. Conversely, the
destruction operators TS-D and TW-D get an upward trend
in frequency to update the best solution for instances with
u = 0.8 to u = 0.9. Due to the complexity of the subproblem
SP3 for solving instances with a large u, the corresponding
destruction operator TSW-D cannot obtain improving solu-
tions frequently. In addition, our problem instances have the
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TABLE V
FREQUENCY OF UPDATING THE BEST SOLUTION FOR EACH DESTRUCTION OPERATOR

Instances Destruction operators

S W T u S-D W-D TS-D TW-D SW-D TSW-D

60 60 40 0.80 0.09 0.07 0.07 0.10 0.21 0.47
0.85 0.06 0.09 0.17 0.22 0.10 0.36
0.90 0.05 0.13 0.25 0.32 0.08 0.16

90 90 60 0.80 0.04 0.11 0.13 0.15 0.17 0.40
0.85 0.06 0.08 0.23 0.27 0.12 0.24
0.90 0.06 0.10 0.35 0.31 0.07 0.12

120 120 80 0.80 0.09 0.08 0.17 0.12 0.15 0.39
0.85 0.07 0.07 0.23 0.26 0.16 0.20
0.90 0.06 0.08 0.27 0.35 0.10 0.14

150 150 100 0.80 0.05 0.11 0.18 0.20 0.17 0.29
0.85 0.08 0.11 0.20 0.21 0.16 0.22
0.90 0.06 0.12 0.28 0.33 0.09 0.12

200 200 120 0.80 0.09 0.09 0.16 0.16 0.21 0.29
0.85 0.07 0.10 0.16 0.24 0.16 0.27
0.90 0.06 0.10 0.23 0.28 0.16 0.17

250 250 160 0.80 0.08 0.11 0.18 0.14 0.20 0.29
0.85 0.06 0.11 0.19 0.25 0.14 0.24
0.90 0.12 0.12 0.28 0.37 0.10 0.01

300 300 200 0.80 0.09 0.11 0.13 0.15 0.16 0.37
0.85 0.08 0.14 0.18 0.24 0.13 0.24
0.90 0.07 0.09 0.25 0.34 0.10 0.15

350 350 250 0.80 0.09 0.10 0.22 0.16 0.14 0.30
0.85 0.08 0.13 0.19 0.23 0.15 0.22
0.90 0.07 0.10 0.30 0.37 0.06 0.10

400 400 300 0.80 0.10 0.11 0.16 0.21 0.20 0.21
0.85 0.09 0.11 0.24 0.27 0.14 0.15
0.90 0.10 0.09 0.34 0.39 0.04 0.04

500 500 360 0.80 0.12 0.14 0.19 0.18 0.18 0.20
0.85 0.09 0.12 0.23 0.26 0.15 0.15
0.90 0.09 0.12 0.32 0.36 0.07 0.03

sensor detection probability pik ∈ [0.50, 0.95] and weapon
destruction probability qjk ∈ [0.72, 0.96]. The higher skew of
weapons over sensors suggests that the assignment of weapons
has a more significant impact on the solution quality. Hence,
sensor-related destruction operators such as S-D and TS-D are
slightly inferior to weapon-related operators W-D and TW-D.

Furthermore, we analyze whether incorporating the adaptive
mechanism plays a crucial role in ALNS. To perform this
experiment, we generate an ALNS variant by replacing the
adaptive mechanism with a random strategy for selecting
destruction operators. We can achieve the same and unchange-
able weight of selecting each operator by simply setting
v1, v2, v3 to 0 and λ to 1. We rerun the experiment for
this ALNS variant using the same experimental setting as in
Section VI-C. Figure 3 shows the comparison between the
ALNS algorithms with and without the adaptive mechanism.
In this figure, the horizontal axis represents instances of
different sizes, and the vertical axis records the objective
percentage gaps between the two algorithm versions for each
instance, calculated by (Objwith − Objw\o)/Objw\o × 100.

The negative value of gap% means that a better objective
value is obtained by the ALNS algorithm with the adaptive
mechanism for solving this instance, and vice versa. We ob-
serve from Figure 3 that the ALNS algorithm with the adaptive
mechanism performs better for 22 out of 30 instances when
compared to the one without the adaptive mechanism. In addi-
tion, the adaptive mechanism is more important when solving
large instances and particularly effective when u = 0.9. This
observation is consistent with the analysis in Table V. For
large instances, i.e., S350-W350-T250 to S500-W500-T360,
the use frequencies of six operators vary between [0.09, 0.30],
[0.10, 0.21] and [0.12, 0.20] when u = 0.8, whereas these
values vary between [0.06, 0.37], [0.04, 0.39] and [0.03, 0.36]
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Fig. 3. ALNS comparison: with and without adaptive mechanism.

when u = 0.9. This means that for instances of large size
and desired destruction probability, the ALNS algorithm has
a more obvious preference for operators. Thus, the adaptive
mechanism is fundamental.

VII. CONCLUSION

In this paper, we studied a novel S-WTA problem aimed
at minimizing assignment cost while ensuring minimum de-
sired destruction probability for each target. We formulated
this problem as an integer nonlinear programming model
and derived the lower and upper bounds by constructing its
linear approximations. To solve this problem, we propose
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an adaptive large neighborhood search heuristic composed
of a destruction phase and a model-driven repair phase. We
conducted numerical experiments on various instance sets to
test the proposed models and algorithms. The results indicate
that the derived lower and upper bounds are quite close
for small instances. Our ALNS algorithm exhibits competi-
tive performance with the Gurobi solver for small instances
while demonstrating superior effectiveness for large instances.
Furthermore, controlled experiments show that our model-
driven repair phase outperforms traditional heuristic repair
operators. In comparison with the reference methods that have
been adapted from the literature, the ALNS algorithm also
shows a significant strength. For practical implementation in
actual combat scenarios, once the commander has collected
sufficient battlefield information and established the desired
levels of destruction based on various considerations, our
ALNS algorithm can be used to ensure efficient coordination
of diverse combat resources with reduced operational costs.

In future research, dynamic S-WTA problems can be studied
to simulate more realistic battlefield situations with increasing
combat resources and targets over time. Additionally, given the
high demand for rapid responses, investigating effective neigh-
borhood structures along with acceleration techniques would
help improve the computational efficiency of our algorithm.
Since the linearization method of approximation models is
computationally intensive, future research could explore exact
algorithms such as branch-and-cut or column generation.
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I. LOWER AND UPPER BOUNDS

A. The proof of Proposition 1

Let P and PL be the solution space of (S-WTA) and (LB),
and obj and objl be their respective optimal objective values.
For any feasible solution (Ak, Bk) of (S-WTA), one particular
l can be found that satisfies

al ≥ Ak ≥ al−1.

Due to AkBk ≥ u, we have

Bk ≥ u

Ak
≥ u

al
= bl.

Therefore, if Ak and Bk satisfy constraint (6), there must exist
some zkl = 1 such that constraints (9)–(12) hold. In other
words, any feasible solution of (S-WTA) is also feasible for
(LB). As a result, we have PL ⊇ P. Because formulations (S-
WTA) and (LB) have the same objective and other constraints,
it can be concluded that objl ≤ obj. Thus, the optimal
objective value of (LB) is a valid lower bound of (S-WTA).

B. The proof of Proposition 2

Let P and PU be the solution space of (S-WTA) and
(UB), and obj and obju be their respective optimal objective
values, respectively. For target k, suppose that zkl = 1 at one
particular l. Then, constraints (17)–(19) of (UB) yield

al+1 ≥ Ak ≥ al and Bk ≥ bl.

Due to the minimum values that Ak and Bk may take are al
and bl, we have

AkBk ≥ albl = u.

Therefore, if Ak and Bk satisfy constraints (17)–(20), con-
straint (6) is also satisfied. In other words, any feasible solution
of (UB) is also feasible for (S-WTA). The analysis above
means that P ⊇ PU. As formulations (S-WTA) and (UB) have
the same objective and other constraints, it can be concluded
that obj ≤ obju. Thus, the optimal objective value of (UB) is
a valid upper bound of the (S-WTA).
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II. COMPUTATIONAL RESULTS

A. Robust analysis of ALNS

We give 10 independent runs for solving each instance
and use Boxplots to summarize the experimental results. For
each instance, we record the percentage difference of the
objective value obtained in each run Objr from the average
objective value among 10 runs Objavg, which is calculated by
Difference% = (Objr−Objavg)/Objavg×100. As shown in Fig-
ure 1, the percentage differences depend on the problem size
and destruction probability. However, the maximum percent-
age difference does not exceed 5% for all the instances. This
suggests that our ALNS algorithm presents good robustness
in different runs.

B. Comparisons between ALNS and reference methods

We conduct an additional experiment using a running time
of 300 seconds to compare the proposed ALNS algorithm with
four reference methods. For instances where the optimal solu-
tion is known, the execution of each algorithm is terminated
upon reaching the optimal values. We record the objective
value found by each algorithm and the computational time re-
quired to attain this value. In addition, we record the objective
percentage gap between ALNS and the other four algorithms,
calculated by (ObjA − ObjALNS)/ObjALNS × 100, where ObjA

is the objective value of the comparison algorithms.
In Table I, a positive value of gap% in columns “UB

model”, “ALNS-H”, “MRBCH” and “VLSN” means they are
worse than ALNS. For a detailed analysis, we divide the 30
instances into small and large groups according to the instance
size. The small group includes instances with no more than
200 sensors/weapons, while the large group includes the other
instances.
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Fig. 1. The Boxplot for the repeated 10 runs of different instances.
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